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ARTICLE INFO ABSTRACT

Keywords: Achieving predictions of brain functional activation patterns/task-fMRI maps from its underlying anatomy is
SMRI an important yet challenging problem. Once successful, it will not only open up new ways to understand
Task-fMRI

how brain anatomy influences functional organization of the brain, but also provide new technical support for
the clinical use of anatomical information to guide the localization of cortical functional areas. However, due
to the non-Euclidean complex architecture of brain anatomy and the inherent low signal-to-noise ratio (SNR)
properties of fMRI signals, the key challenge in building such a cross-modal brain anatomo-functional mapping
is how to effectively learn the context-aware information of brain anatomy and overcome the interference
of noise-containing task-fMRI labels on the learning process. In this work, we propose a Unified Geometric
Deep Learning framework (BrainUGDL) to perform the cross-modal brain anatomo-functional mapping task.
Considering that both global and local structures of brain anatomy have an impact on brain functions from
their respective perspectives, we innovatively propose the novel Global Graph Encoding (GGE) unit and Local
Graph Attention (LGA) unit embedded into two parallel branches, focusing on learning the high-level global
and local context information, respectively. Specifically, GGE learns the global context information of each
mesh vertex by building and encoding global interactions, and LGA learns the local context information of
each mesh vertex by selectively aggregating patch structure enhanced features from its spatial neighbors.
The information learnt from the two branches is then fused to form a comprehensive representation of brain
anatomical features for final brain function predictions. To address the inevitable measurement noise in task-
fMRI labels, we further elaborate a novel uncertainty-filtered learning mechanism, which enables BrainUGDL
to realize revised learning from the noise-containing labels through the estimated uncertainty. Experiments
across seven open task-fMRI datasets from human connectome project (HCP) demonstrate the superiority of
BrainUGDL. To our best knowledge, our proposed BrainUGDL is the first to achieve the prediction of individual
task-fMRI maps solely based on brain sMRI data.

Brain anatomo-functional mapping
Geometric deep learning

1. Introduction modeling their relationships. Specifically, sMRI explicitly provides in-
dividual brain anatomical structure, and task-fMRI provides individual
Exploring brain anatomo-functional relationship has always been brain functional activation patterns/task-fMRI maps under different

a core issue in neuroscience (De Benedictis et al., 2014; Amiez and cognitive task contrasts (see Fig. 1).

Petrides, 2014; Jiang et al., 2021), which is critical for us to understand
how individual behavioral differences or disease progressions emerge
from the underlying brain anatomy (Schultz et al., 1994; Papo, 2019;
Besson et al., 2021). Non-invasive imaging modalities of structural
Magnetic Resonance Imaging (sMRI) and task-functional Magnetic Res-
onance Imaging (task-fMRI) provide the necessary data source for

For decades, numerous studies have shown that the alternations
in brain anatomy are strongly coupled with individual differences in
brain functions (Amiez and Petrides, 2014; Sun et al., 2016; Amiez and
Petrides, 2018; Im and Grant, 2019), therefore, a reasonable idea is to
use brain anatomy to predict brain functions. Just like the conformation
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Fig. 1. Our BrainUGDL aims to predict brain functional activation patterns/task-fMRI maps under different cognitive task contrasts from individual inherent brain anatomy. Once
successful, it will not only provide new ways to understand how brain functional abnormalities arise from the underlying anatomy, but will also provide new technical support
for using anatomical information to guide the localization of cortical functional areas, improving the low reliability of fMRI in clinical applications.

of a protein determines its chemical properties and, ultimately, its
biological function (Suarez et al., 2020), neuroscience has generally
suggested that the unique folds of brain anatomy formed by the rapid
expansion of the cortical mantle provide the basis for the formation of
brain functions (Budday et al., 2015; Fernandez et al., 2016; Calhoun,
2018; Long et al., 2018), that is, the brain anatomy should be possible,
at least partially, to predict brain functions. Once successful, it will not
only provide new ways to understand how brain functional abnormal-
ities arise from the underlying anatomy (Jiang et al., 2021), but will
also provide new technical support to improve the low reliability of
fMRI in clinical application by using anatomical information to guide
the localization of cortical functional areas (Ellis et al., 2020).

Thus, our target is to build a mapping model # to achieve the
prediction from brain anatomy (derived from sMRI) to brain functional
activation patterns (derived from task-fMRI) at the individual level, this
process can be defined as:

Yi jon — -‘T(Xanaromy) (1)

function

Unfortunately, building such a cross-modal brain anatomo-functional
mapping model still faces challenges. Firstly, although modern ma-
chine learning algorithms represented by deep neural networks (Le-
Cun et al.,, 2015) show great potential in extracting effective high-
level context features, the brain anatomical surface data derived from
sMRI belongs to non-Euclidean architecture (Thompson et al., 1996),
which challenges most deep learning models that originally designed
for Euclidean-structured data, such as convolutional neural networks
(CNNs) (LeCun et al., 1995). Recently, geometric deep learning aims to
fill the gap by generalizing deep learning models from a 2D Euclidean
plane to a 3D non-Euclidean geometric manifold (Monti et al., 2017;
Cao et al., 2020; He et al., 2020). However, studies have shown that
both global and local structures of brain anatomy have an impact on
brain functions from their own aspects (details in Section 2.1), the
existing geometric deep learning methods have not yet established an
effective global and local context-aware feature extraction mechanism,
which prevents us from building reliable anatomo-functional mappings.
Secondly, due to MRI system-related instabilities and physiological
fluctuations (Hutton et al., 2011), the measures of task-fMRI maps
generally inevitably contain noise (Biswal et al., 1996; Hutton et al.,
2011). However, these noise-containing labels will largely compro-
mise the learning process and pose another challenge for building the
cross-modal brain anatomo-functional mapping model.

In this work, we propose a unified geometric deep learning frame-
work (BrainUGDL), which aims to effectively learn global and local
context features of the 3D brain anatomy, thereby facilitating mapping
to brain functions. BrainUGDL directly takes the 3D brain anatomy as
input, and output Al-predicted task-fMRI maps, making it comparable
to the actual measured ones. As illustrated in Fig. 2(b), considering that
both global and local features of brain anatomy have an impact on brain
functions from their respective perspectives, BrainUGDL is designed

with two parallel geometric deep learning branches to focus on encod-
ing global and local context features of brain anatomy, respectively.
Specifically, in the global-context branch, we propose a novel Global
Graph Encoding (GGE) unit to learn the global context of each mesh
vertex by building and encoding the global interactions. In the local-
context branch, a Local Graph Attention (LGA) unit is proposed, which
aims to learn the local context of each vertex by selectively aggregating
patch structure enhanced features from its spatial neighbors. Subse-
quently, the global and local context information of these two branches
are fused to obtain a comprehensive representation of anatomical fea-
tures for the final predictions of task-fMRI maps. In addition, to address
the inevitable measurement noise in fMRI, an uncertainty-filtered learn-
ing mechanism is further proposed, which enables BrainUGDL to realize
revised learning from the noise-containing task-fMRI labels through the
estimated uncertainty, reducing the interference of noisy labels on the
learning process.

We validate BrainUGDL across seven open task fMRI datasets from
human connectome project (HCP) (Van Essen et al., 2013). Experimen-
tal results show that BrainUGDL is not only capable of achieving such
across-modal anatomo-functional predictions, but is also able to capture
nuanced inter-individual differences. The excellent performance makes
it promising to make clinical decisions on individual cortical functional
localization using sMRI data. Generally, the main contributions of this
study are summarized as follows:

» For the first time, we achieved the prediction of individual task-
fMRI maps solely based on brain sMRI data. Its excellent perfor-
mance on seven open task-fMRI datasets of HCP demonstrates the
great promise of BrainUGDL in utilizing individual sMRI data to
make decisions about cortical functional localization for clinical
populations.

Our newly proposed Global Graph Encoding (GGE) unit innova-
tively introduces global encoding mechanism into current geo-
metric deep learning framework and learns the global context
information of each vertex through building and encoding the
global interactions.

Our newly proposed Local Graph Attention (LGA) unit creatively
utilizes patch structure enhanced spatial information to differenti-
ate the potential task-oriented contribution of different neighbors
and learns the local context information of each vertex by ag-
gregating the patch structure enhanced features from its spatial
neighbors.

To address the inevitable measurement noise in fMRI, an
uncertainty-filtered learning mechanism is further proposed,
which enables BrainUGDL to adaptively revise the fit errors of
noise-containing task-fMRI labels through the estimated uncer-
tainty, reducing the interference of noisy labels on the learning
process.
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Fig. 2. (a) Challenges faced in achieving cross-modal brain anatomo-functional mapping. (b) The overall strategy of our proposed BrainUGDL: (i) By preprocessing from the raw
sMRI data, the brain anatomy in medical imaging will be represented by a triangular mesh that contains vertices and connections between them, BrainUGDL directly takes the
3D brain anatomical mesh as input. (ii) The newly proposed Global Graph Encoding (GGE) unit and Local Graph Attention (LGA) unit embedded into the global branch and local
branch respectively to learn global and local context-aware features of the 3D brain anatomy in a task-adaptive manner. In addition, with the newly introduced uncertainty-filtered
learning mechanism, BrainUGDL can revise the influence of those task-fMRI labels with large noise, thus ensuring the effectiveness of the learning process. (iii) After iterating and
updating, BrainUGDL outputs the predicted task-fMRI maps in a vertex-wise dense prediction manner.

2. Related work
2.1. Brain anatomo-functional relationship

Neuroimaging research involves exploring both anatomical and
functional information over the brain, numerous studies have shown
that the local and global features of brain anatomy have their own
different influence on brain functions. For example, the local brain
morphology or cortical thickness can be closely related to the local
patterns of brain functional activation (Amiez et al., 2006; Benson
et al., 2012; Amiez et al., 2013; Amiez and Petrides, 2014; Li et al.,
2015; Lopez-Persem et al., 2019; Troiani et al., 2020), while the
overall cortical folding pattern is related to the performance of human
cognitive functions (Cash et al., 2012; Huster et al., 2011; Zhang
et al.,, 2010; Whittle et al., 2009), or even leads to brain cognitive
impairments (Willerman et al., 1991; Beaulieu et al., 2005; Simpson
et al., 2012; Reardon et al., 2018). Therefore, effective extracting local
and global context-aware features of brain anatomy is important to
facilitate the cross-modal brain anatomo-functional mapping process.

2.2. Geometric deep learning

Geometric deep learning aims to build neural networks that can
learn from non-Euclidean data, such as manifold-based brain anatom-
ical surfaces (Bronstein et al., 2017; Gopinath et al., 2019; Cao et al.,
2020; Nguyen et al., 2021; Besson et al., 2021). Although a recent
study has demonstrated the applicability of geometric deep learning to
predict brain function from anatomy (Ribeiro et al., 2021), they only
focused on the visual cortex, whereas our task focuses on the whole
brain. In current geometric deep learning framework, point-based neu-
ral network (Qi et al., 2017a,b; Ge et al., 2018; Deng et al., 2018; Zhao
et al., 2021) and graph-based neural network (Monti et al., 2017; Fey
et al., 2018; Verma et al., 2018; Wang et al., 2019a; Wu et al., 2020)
are the two most successful technical backbones. Specifically, they
are both able to handle the non-Euclidean data directly without any
transformation, thus possessing the ability to extract intrinsic geometric
features. Nevertheless, how to extract context-embedded features from
non-Euclidean data is still a challenge for modern geometric deep
learning, such as the classical PointNet (Qi et al., 2017a), which only
uses a global max pooling (GMP) layer as the global feature descriptors,
ignoring the global context information. Considering that both global
and local features of brain anatomy will have a huge impact on brain

functions, in this work, we innovatively proposed Global Graph Encod-
ing (GGE) unit and Local Graph Attention (LGA) unit to learn the global
and local context-aware features of the 3D brain anatomy respectively
in a task-adaptive manner.

2.3. Uncertainty estimation

Uncertainty estimation is widely leveraged in machine learning
tasks (Kendall et al., 2015; Gal and Ghahramani, 2016; Zheng and
Yang, 2021; Ju et al., 2022), since it is able to quantify the inherent
noise for the given labels, thus improving the robustness of model
training. For example, Kendall et al. (2015) developed a Bayesian con-
volutional neural network to model epistemic uncertainty and produce
probabilistic pixel-wise segmentation results. Zheng and Yang (2021)
leveraged the prediction variance to formulate the annotation uncer-
tainty and involved the uncertainty into the standard cross-entropy
loss to rectify the learning from noisy pseudo labels. Ju et al. (2022)
used Monte-Carlo-Dropout (Gal and Ghahramani, 2016) to measure the
example uncertainty and re-weighted the examples by a normalized
uncertainty score to improve the robustness of the model identifying
samples with label noise. Inspired by previous studies, we estimated
the uncertainty of task-fMRI labels with a simple and efficient auxiliary
predictor in this work and involved the uncertainty into the training
process to realize revised learning from noise-containing task-fMRI
labels.

3. Method
3.1. Overview

Our target is to achieve the prediction of individual-specific task-
fMRI maps from the inherent brain anatomy under different cognitive
task contrasts, which can be regarded as a vertex-wise dense predic-
tion task across multiple subjects. Given a 3D brain anatomical sur-
face/mesh with M vertices, we define the input of BrainUGDL as a M X
12 matrix. That is, each specific vertex is described by a 12-dimensional
vector, including its registered spatial coordinates (i.e., x, y, z) in both
pial and white matter surfaces, and six other attributes (i.e., cortical
thickness, sulcal depth, curvature, myelin, and neuroanatomical labels).
BrainUGDL can effectively capture the mapping relationship between
anatomical features and functional activation labels, and output an
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Fig. 3. Illustration of our proposed BrainUGDL, which consists of the global-context branch, the local-context branch, and the uncertainty estimation module (UEM). The number
marked in parentheses for each unit represents the number of channels for its output feature map.

M x C matrix as the final predictions, where each column denotes the
predicted task-fMRI maps for different cognitive task contrasts.

Our proposed BrainUGDL framework (shown in Fig. 3) contains
three main parts, including the global-context branch (Section 3.2),
the local-context branch (Section 3.3), and the Uncertainty Estimation
Module (UEM) (Section 3.4). Suppose X uqromy and Y0, TEPESent
the input brain anatomical features and the predicted task-fMRI maps
by BrainUGDL. The raw features of brain anatomy firstly pass through
two branches, the global-context branch and the local-context branch,
for extracting global and local context-aware information of each vertex
respectively:

Fgloha]:?global—bmnch(Xanatomy) (2)

Flocal:'{rlocal—branch(Xanutomy) (3)

where Fyiopa1—pranch @04 Fiocar—prancn are the functions of global-context
branch and local-context branch respectively. The extracted global-
context feature Fy, and local-context feature F,, are then fused for
a higher-level representation for final prediction:

Ffusion :Fglobul @ Flocal 4

where @ indicates the channel-wise concatenation. Finally, the fused
feature is fed into two predictors. One named primary predictor, and
the other named auxiliary predictor:

qunctian(P)=?primary(Ffusion) (5)
qunctian(A)=fauxiliary(Ffusian) (6)
where F,.;0ry a0d Fyysifiary are the functions of primary predictor and

auxiliary predictor respectively. Among them, the output from the
primary predictor is the final predicted task-fMRI map, while the output
from the auxiliary predictor is used for estimating the uncertainty of the
noise-containing task-fMRI labels:

Ure = uncertainty(yfunctian(P)’ qunction(A)) (7)
where %,cerraimy 1S the function of uncertainty estimation. By intro-

ducing the estimated uncertainty U,, as a regularization term into a
standard regression loss, BrainUGDL can realize revised learning from
the noise-containing fMRI labels to avoid interference of noisy labels
on the learning process.

3.2. Global-context branch

3.2.1. Structure of global-branch

Motivated by the great potential of classical PointNet (Qi et al.,
2017a) in the global representation of point sets, the global-context
branch is designed with reference to the architecture of PointNet, which
leverages shared multi layer perceptrons (MLPs) to learn independent
feature representation of each vertex. After that, different from Point-
Net that uses a global max pooling (GMP) layer as the global feature
descriptors, which ignores the global context information, we design

Global Graph Encoding (GGE) unit instead of the GMP layer in PointNet
for achieve learning of global-context embedding features.

As shown in Fig. 3, the former part of the global-context branch is
consists of three MLPs, which is used for extracting increasingly higher-
level features of each vertex. The number of output channels of the
three MLPs is 32, 64, and 128, respectively. Each MLP is followed by
batch normalization (BN) and rectified linear unit (ReLU) activation.
After feature maps output from the last MLP, a GGE unit is applied to
encode the global context information of the whole brain anatomy.

3.2.2. Global graph encoding (GGE) unit for learning global context fea-
tures

In order to break the isolation between vertices and learn the
global context embedding features for each vertex, we innovatively
designed the GGE embedded into the global context branch. As shown
in Fig. 4, GGE consists of two main steps: first building the affinity
relationship between each vertex and all other vertices through the
vertices’ own features, and then encoding all the interactions through
a graph convolution layer. With the help of GGE, each vertex learns
the optimal global context-awareness in a task-adaptive manner, thus
facilitating our vertex-wise dense prediction task.

Global graph construction. The global graph is constructed by
the global relationship matrix A € RM*M_  which is learnt with a
parameterized dot product mechanism to adaptively build the affinity
of the relationship between any two vertices. For the input feature
matrix X € RM*F where M is the number of the vertices, F is the
feature dimensions, the process of computing A from the input feature
matrix X is illustrated in Fig. 4, and it is formulated as:

A = ¢(X)diag(p(X)p(X)" ®)

where ¢(X) € RM*F is a linear embedding followed by a ReLU
activation, p(X) € R'F is a similar setting with the channel-wise
attention proposed in Woo et al. (2018), which is consists of a global
average pooling (GAP) layer and an MLP layer followed by a ReLU
activation, ¢(X)7 is the transpose of ¢(X).

Graph encoding. After that, we perform graph encoding based
on the constructed global interaction matrix A. The purpose of global
graph encoding is to capture the relationship between any one vertex
and all other vertices, which can be simplified to capture the mutual
interactions between all vertex features (Chen et al., 2019). Therefore,
we perform the graph encoding process with a normal graph con-
volution layer. Each vertex can be deemed as a node of the graph,
and the global interaction matrix A € RM*M defines the connection
weights between all the nodes. Each node updated its features by
aggregating information from all the other connected nodes to achieve
global context-aware features. To avoid a high memory footprint on
large and dense graphs, we adopt the graph convolution layer described
in Welling and Kipf (2017) which can be implemented as a simple
matrix multiplication without any explicit operations, this process can
be formulated as:

F iopa = Relu(AX W) ©)

global
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Fig. 4. The architecture of the GGE unit in the global-context branch.

where A is the normalized form of 4, A = [)’%Af)’%, D = diag(d,, d,,.
wdp), di = ¥, A, and W is a trainable weight matrix, Fyqp, is the
output global context-aware features. The left multiplication of the
input features X by the global interaction matrix A is performed to
obtain the global context perception of all spatial vertices.

Summary of the advantages. (1) The global-context branch uti-
lizes the classic MLP-based pipelines and the innovatively proposed
GGE to extract global context-aware features of brain anatomy. (2)
GGE provides an efficient and flexible way to build the global relation-
ship in a task-adaptive manner and realizes global perception through
encoding over global interactions.

3.3. Local-context branch

3.3.1. Structure of local-context branch

The local-context branch is designed with the architecture of graph-
based neural network, which is particularly effective in learning local
features because it updates the feature representation by aggregating
the neighborhood information on a constructed graph. However, ex-
isting neighborhood information usually lacks context awareness of
the overall local patch, thus, we design the LGA unit and make it as
the backbone of the local-context branch. Specifically, the LGA unit
uses patch structure enhanced spatial information to learn the attention
coefficients, thus giving each neighbor different importance to extract
more discriminating local context features.

As shown in Fig. 5, three LGA units are employed in local-context
branch, the number of output channels of the three LGA units is 32,
64, and 128, respectively. Each LGA unit is followed by an exponential
linear unit (ELU) activation and applied with a dropout with probability
of 0.5 for its inputs.

3.3.2. Local graph attention (LGA) unit for learning local context features

Local graph construction. Since the 3D brain anatomical surface
is represented by a triangular mesh composed of vertices and edges
that well reflects the spatial geometry of brain anatomy (Glasser et al.,
2013), therefore, unlike the global graph which is constructed based on
a learning approach, our local graph G(V, E) is fixed and is constructed
with using the inherent edge information of the triangular mesh, where
V represents the set of the M mesh vertices, E represents the set of
edges. For each vertex v;, we denote its 1-hop neighboring set (also
includes v;) in the G as V.

Patch structure enhanced attention. In the local graph, each
vertex and all its 1-hop neighboring vertices joined together can be

Medical Image Analysis 83 (2023) 102681

seen as a patch. Since graph-based neural networks update feature
representations by aggregating information from neighboring nodes,
therefore, enhancing the perception of neighboring vertices to the over-
all patch structure will be more helpful for the central vertex to obtain
effective geometric information. Thus, for each center vertex v; in G, we
firstly establish the patch structure enhanced perception (PSEP) of its
neighbors. Specifically, inspired by Wang et al. (2019b), we merge the
feature of the center vertex into its neighbors to enhance the structure
perception of the overall local patch during the information aggregation
process. For each neighboring vertex v; € W, its feature r; with the
PSEP can be formulated as:

D=MLPOE" @), Vo, € N, (10)

where fl.“) and fl(,[) denote the feature of v; and v; in /~th LGA unit,
respectively. MLPW g RAU+Dxd0 O e Rd™Y ig the new represen-
tation of v; with PSEP in /—th LGA unit. Then, we use r; to compute
the attention coefficient for each neighbor. Specifically, the attention
coefficient a(” is computed by applying softmax to the values computed

by attentlon function ¢

exp(e) )

o _
NN b B (11
T Tiew exp@l) @)

where (p() in our work is a single-layer feedforward neural network

followed by a LeakyRelu activation (with negative input slope « = 0.2),
which can flexibly capture potential dependency between the vertices
of the local spatial patch. Finally, the feature aggregation in the /—th
LGA unit is formulated as:

(1+1) Z a(’) (/) 12)
JEN;

where f,.(m) indicates the updated features of center vertex v;, which
also will be the input for the (/ + 1)—th LGA unit.

Summary of the advantages. (1) The local-context branch uses
the creatively designed LGA as the backbone to obtain local context-
aware high-level feature representation through stacking LGA units. (2)
LGA utilizes the information with PSEP to differentiate the potential
task-oriented contribution of different neighbors and learns local con-
text features of each vertex by selectively aggregating patch structure
enhanced feature from its spatial neighbors.

3.4. Uncertainty estimation module (UEM) for achieving uncertainty-
filtered learning

When recording brain functional activation patterns from an fMRI
scanner, the scanner noise may interfere and change blood oxygena-
tion level-dependent (BOLD) signals, thus leading to noise-containing
labeling (Liu, 2016). The problem will be even worse at higher field
strengths. To overcome the unfavorable effects of these unreliable
labels on the training process, we design an Uncertainty Estimation
Module (UEM), which estimates the model uncertainty with a simple
and efficient way and involves the uncertainty into the optimization
objective to realize the uncertainty-filtered learning mechanism. Specif-
ically, we model the uncertainty through the approximated variance of
the predicted functional activation value and involve the uncertainty
as a new regularization term into the standard regression loss function
to realize adaptive revised learning from the noise-containing task-
fMRI labels. An intuitive illustration of the uncertainty-filtered learning
mechanism can be seen in Fig. 6.

Learning with noisy labels. When dealing with continuous nu-
meric variables, a general approach is to use a regression loss to
calculate the amount of deviation of the prediction value from the
underlying true value. To keep the gradient stable in the training
process, we use the smooth L1 loss (Girshick, 2015) instead of the
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Fig. 6. An intuitive illustration of the uncertainty-filtered learning mechanism. The
uncertainty is estimated by the prediction discrepancy between the primary and the
auxiliary predictor, then the estimated uncertainty is formulated as a new regularization
term, added into the standard regression loss to perform uncertainty-filtered learning.
If the estimated uncertainty equals to zero, the uncertainty-filtered learning degrades
to the objective of the conventional regression learning and the model will focus on
minimizing the prediction bias only. In contrast, when the label is unreliable, the model
is more likely to predict wrongly leading to a large value of estimated uncertainty,
then the uncertainty-filtered learning will automatically revise the prediction bias to
a smaller value based on the estimated uncertainty, thus reducing the effect of label
noise on the model training.

traditional MSE loss (Allen, 1971) in our prediction task, and the
smooth L1 loss can be formulated as:

E(n) - { OAS()A/n - yn)z’ if |)A/n - yn| <1 (13)

|92 = yu| = 0.5, otherwise

where y, is the target value, and J, is the prediction value. However,
due to the inherent low SNR properties of fMRI signals, y, usually
inevitably contains noise. Since deep neural networks have strong
memorization capacities, training the model parameter by minimizing
the bias between the predictions and noise-containing labels could
largely compromise the training.

Uncertainty estimation. Recently, the metric of target label noise
from the perspective of uncertainty has been widely adopted by deep
neural network models (Zheng and Yang, 2021; Ju et al., 2022). In our
model, we design an auxiliary predictor to estimate the uncertainty.
As the architecture of BrainUGDL shown in Fig. 3, in addition to the
normal primary predictor, we further introduced an auxiliary predic-
tor. The auxiliary predictor performs the same task as the primary
predictor, that is, both of them will give their own predictive results
for the same candidate. Because the auxiliary predictor located at a
relatively shallow layer results in a different learning way from the
primary predictor, and both of the two predictors apply the dropout
functions (Srivastava et al., 2014), this will lead to a prediction dis-
crepancy during training. Based on the prediction discrepancy, we can

get the approximated variance, which reflects the uncertainty of the
model. To keep the same shape with the loss functions, we approximate
the absolute errors of the two predictive results as the uncertainty:

U, = [Jup) = Ity a4)

where J,p, and J, ) represent the output predictions from the primary
predictor and the auxiliary predictor, respectively.

Uncertainty-filtered learning mechanism. After obtaining the
estimated uncertainty, we involve it as a regularization term into
the smooth L1 loss function to rectify the learning from the noise-
containing task-fMRI labels. If the two predictors have a large discrep-
ancy on predictions, this reflects a large uncertainty of the model on
the prediction results. By involving the uncertainty into the training
target, the training process will adaptively revise the prediction bias to
a smaller value to reduce the interference of noisy labels on the learning
process. The uncertainty-filtered smooth L1 loss can be formulated as:

oo 2L 0sU =yl - U ir (19 = val - UL <1 s
v ||f’n - yn| - Un| — 0.5, otherwise

To prevent a large uncertainty from always existing, we extra add
the uncertainty itself U, into loss function as a trade-off. Thus, the
uncertainty-filtered smooth L1 loss finally used in our model can be
formulated as:

oo d 055, =yl U + U if (|5, = 3] = U, <1 a6)
v |90 = | = U,| = 05 + U, otherwise

It is worth noting that both the primary predictor and auxiliary pre-
dictor are involved with the designed Ly, 10ss, 50 9, € {Py(p)s Puca)}-
But only the outputs from the primary predictor are used as our
prediction results, to keep the prediction responsibility of the primary
predictor, the auxiliary predictor is only valid during training and its
training weight is smaller than the primary predictor. The PyTorch-
style pseudocode of the uncertainty-filtered regression mechanism can
be seen in supplemental Algorithm S1.

Summary of advantages. (1) UEM designs a low-cost and effi-
cient auxiliary predictor to estimate the vertex-wise uncertainty map
by computing the prediction discrepancy with the primary predictor.
(2) The estimated uncertainty has the same shape with the standard
regression loss function, by formulating the estimated uncertainty as a
new regularization item into the standard smooth L1 loss, BrainUGDL
could perform vertex-wise revised learning form the noise-containing
task-fMRI labels.
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4.47

PCC=0.734 -4.47

The Pearson correlation coefficient (PCC) measures
the correlation between the predicted task-fMRI map
and the target task-fMRI map, a higher PCC means
the target task-fMRI map is correctly predicted.

The cortical areas with relatively high functional
activation values indicate that they are responsible
for the corresponding cognitive task contrast. If the
activation patterns can be accurately identified and it
means a good prediction performance.

Fig. 7. Description of the predictive outcomes and the PCC evaluation metric. For easy
observation of the cortical areas, inflated views of the cortical surfaces are shown.

4. Experimental results
4.1. Data and implementation details

We benchmark our performance using preprocessed sMRI and task-
fMRI data from the publicly released HCP.! The subjects were 22 to
35 years old and scanned using Washington University’s 3T Siemens
Connectome Scanner (Van Essen et al., 2012). Following the minimal
preprocessing pipelines of HCP (Glasser et al., 2013), each individ-
ual’s native space was registered to the MNI space by applying the
volume-based affine transformation, then was registered to fs_LR_ 32k
surface template with 32,492 vertices of each hemisphere using the
rigid surface-based transformation provided by FreeSurfer and MS-
MAII (Coalson et al., 2018). Due to the medial wall does not contain
cortical gray matter, therefore, 29,696 out of 32,492 vertices for the
left hemisphere and 29,716 out of 32,492 vertices for the right hemi-
sphere were practically selected. In our experiment, those classic brain
anatomical features provided by the FreeSurfer (Fischl, 2012) were
used as the input, specifically, these anatomical features include each
vertex’s spatial location on both inner and outer cortical surfaces
(i.e., x, y and z coordinates of both white matter and pial surfaces),
and six other attributes included cortical thickness, sulcal depth, cur-
vature, myelin (determined by the ratio of T1w/T2w images) and the
neuroanatomical labels in both Desikan atlas (Desikan et al., 2006) and
Destrieux atlas (Destrieux et al., 2010). It is worth noting that all of
these features are derived only from the sMRI without containing any
functional information.

Of the 86 contrasts across 7 task domains included in HCP, 47
unique contrasts were included in our experiments (shown in Table 1),
as the remaining 39 were just sign-reversed contrasts. Considering the
completeness of the required 47 unique contrasts, we finally screened
958 of the 1206 subjects released from HCP for our experimental data.
Among the 958 subjects, 919 with only one scan measurement were
used for training, and the other 39 with two scan measurements were
used for validation/testing, as using the average of the two measure-
ments is considered to be a more reliable test label, which could better
validate the training effectiveness of our model under noise-containing
labels. To improve generalization, we performed data augmentation on
the training set by rotating each brain anatomical mesh around x-, y-
or z-axis with randomly sampling angles between [ /4, —x /4].

All our experimental implementations used PyTorch on a GPU of
Nvidia Tesla V100 with a memory of 32 GB. The training was carried
out for 200 epochs with a batch size of 1 and a learning rate at
0.001 for 100 epochs that was then adjusted to 0.0002, using Adam
optimizer. The weight coefficient of auxiliary predictor in the loss
function was set to 0.5. The best models were saved based on validation

1 https://www.humanconnectome.org/study/hcp-young-adult
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Table 1
Illustration of the 47 contrasts involved in our experiment.

Task domain Contrast
1) 2BK_BODY 2) 2BK FACE 3) 2BK PLACE
4) 2BK_TOOL 5) 0BK_BODY 6) 0BK_FACE
7) OBK_PLACE 8) 0BK_TOOL 9) 2BK

WM 10) 0BK 11) 2BK-0BK 12) BODY
13) 0BK 14) PLACE 15) TOOL

16) BODY-AVG
19) TOOL-AVG

17) FACE-AVG  18) PLACE-AVG

1) UE 2) LF 3) LH
4) RF 5) RH 6) T
MOTOR (MOT) 7) AVG 8) CUE-AVG 9) LF-AVG
10) LH-AVG 11) RF-AVG 12) RH-AVG
13) T-AVG
LANGUAGE (LANG) 1) MATH 2) STORY 3) MATH-STORY

RELATIONAL (RELA) 1) MATCH 2) REL 3) MATCH-REL
SOCIAL (SOC) 1) RANDOM 2) TOM 3) RANDOM-TOM
EMOTION (EMO) 1) FACES 2) SHAPES 3) FACES-SHAPES
GAMBLING (GAM) 1) PUNISH 2) REWARD 3) PUNISH-REWARD

data while keeping the evaluation data untouched. Similar with Tavor
et al. (2016), Pearson correlation coefficient (PCC) was used as the
evaluation metric for our prediction performance, and the PCC was
calculated as follows:

cov(¥). Yp)

PCC,

@Oy, = a7n

GY(AGY(D

where ¥, and Y, represent the individual predicted task-fMRI maps
and the target task-fMRI maps, respectively. More details about the
PCC evaluation metric are described in Fig. 7.

4.2. Training process and sensitivity on sample size

In Fig. 8, we randomly select the LANGUAGE (MATH-STORY) con-
trast as a showcase example to illustrate the evolution of BrainUGDL
over iterations and its sensitivity to sample size. As we can see in
Fig. 8(a), the predicted task-fMRI maps gradually tends to be consistent
with the target in the training process, which shows the effectiveness of
our framework. As the training progresses, the accuracy on both train-
ing and testing datasets converges smoothly (Fig. 8(b)), which shows
that the training strategy is appropriate. The sensitivity of BrainUGDL
on sample size was shown in (Fig. 8(c)), the number of training set was
ranged from 5 to 919 with a smaller step before the plateau and a larger
step after. It can be found that the performance reached a plateau of
0.68 with around 100 subjects. After that, performance only showed
slight improvement by using larger data sample size.

4.3. Comparison with other potential competitors

4.3.1. Quantitative evaluation demonstrates our advantages

To verify the advantages of our proposed BrainUGDL, compari-
son experiments are conducted between BrainUGDL and five other
potential competitors. For a fair comparison, all the compared meth-
ods share the same input anatomical features with our BrainUGDL.
These potential competitors can be grouped into the following three
categories:

(1) Feature-based methods: such as ordinary least squares regres-
sion (OLSR), which is often used in neuroscience in a piece-wise man-
ner (Kannurpatti and Biswal, 2012; Tavor et al., 2016). This method
absolutely rely on these hand-extracted features and model each vertex
independently.

(2) CNN-based learning methods: such as Spherical U-Net (Zhao
et al.,, 2019), which extends the pooling architecture of U-Net to
the icosahedron-like spherical convolution fields. Since the underlying
structure of fs_LR 32K template is derived from an icosahedron, thus
Spherical U-Net can model the registered brain anatomical surface.
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Fig. 8. (a) The predicted task-fMRI maps for the LANGUAGE (MATH-STORY) contrast over multiple epochs are shown. For easy observation of the cortical areas, inflated views
of the cortical surfaces are shown. (b-c) The convergence analysis and sample-size effect analysis of BrainUGDL for the LANGUAGE (MATH-STORY) contrast.
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Fig. 9. Prediction performance measured by PCC between BrainUGDL and other potential competitors on all the 47 unique contrasts. BrainUGDL outperforms the competitors
in all cases except for the GAMBLING (PUNISH-REWARD) contrast, since the activations of the GAMBLING (PUNISH-REWARD) contrast are restricted to sub-cortical gray matter.

The corresponding task name abbreviations and contrast labels can be found in Table

However, due to the different neighborhood structure of each vertex
in fs LR 32K template (e.g., the initial 12 vertices have five direct
neighbors and the remaining have 6 direct neighbors, and the me-
dial wall further breaks its regular neighborhood structure), therefore,
Spherical U-Net relies on manual convolutional kernel definitions to fit
the different neighborhood structures of each vertex.

(3) Geometric deep learning methods: such as PointNet (Qi et al.,
2017a), MoNet (Monti et al., 2017) and Graph AttenTion network
(GAT) (Velickovi¢ et al., 2017; Wang et al., 2019a), which are the
most representative techniques in geometric deep learning today, and
achieve state-of-the-art performance in 3D computer vision. Specifi-
cally, PointNet encodes each vertex individually with shared MLPs,
MoNet parameterizes local representations using pseudo-coordinates
around each vertex, GAT utilizes learnable kernel shapes to dynami-
cally adapt to the local structure of each vertex. These methods are
similar to our BrainUGDL that are able to deal with the registered brain

1.

anatomical surface directly without any manual convolutional kernel
definitions.

The prediction performance of BrainUGDL and the five potential
competitors for all the 47 unique contrasts across the 7 cognitive task
domains are shown in Fig. 9. Due to the activations of the GAMBLING
(PUNISH-REWARD) contrast are restricted to sub-cortical gray mat-
ter (Tavor et al., 2016), whereas our experiments only make prediction
for the cerebral cortex, thus, the prediction results for this contrast
have no comparability, and we exclude the statistical results for the
GAMBLING (PUNISH-REWARD) contrast in the subsequent figures and
tables.

In the remaining 46 contrasts, it is easy to observed that the
learning-based approaches are generally superior to the feature-based
approach, which indicates that by capturing context information, the
learning-based approach can better learn task-oriented feature rep-
resentations of each vertex, thus improving the performance of the
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Fig. 10. The visual comparisons between BrainUGDL and other five potential competitors on the LANGUAGE (MATH-STORY), RELATIONAL (REL), SOCIAL (TOM) contrasts. For
each contrast, two subjects are in consideration, one is to randomly select from the test subjects as a fixed reference, e.g., “143325”, and the other is to select the test subjects
with the lowest correlation with the reference subject, so as to allow individual differences between the two subjects. The green arrows highlight where our method predicts
more accurately than the potential competitors for the same example case, and the red circles highlight those cortical activation patterns that differ individually but can still be
accurately predicted. For easy observation of the cortical areas, inflated views of the cortical surfaces are shown.

vertex-wise prediction task. Among the learning-based methods, Spher-
ical U-Net, PointNet, MoNet, and GAT have similar performance, but
with slight difference on different contrasts, which illustrates that
these methods have comparable ability to capture context informa-
tion, and their different kernel architectures result in slightly different
performance in the face of different contrasts. Finally, compared with
Spherical U-Net, PointNet, MoNet and GAT, our BrainUGDL achieves
the best prediction performance and significantly outperforms all other
potential competitors on 19 of them (Supplemental Table S1), suggest-
ing that our designed simultaneous global and local context feature
extraction is appropriate and necessary for the in-depth understand-
ing of brain anatomo-functional relationship, and that the designed
uncertainty-filtered learning mechanism further powers the brain cross-
modal anatomo-functional prediction process. The same comparative
results can also be observed on another metric (Supplemental Fig. S1),
the whole-brain R%-score (Dohmatob et al., 2021), where BrainUGDL
outperforms other potential competitors and still achieves significant
improvements on 9 of these contrasts (Supplemental Table S2), indi-
cating that the improved performance of our approach is not limited to
the choice of PCC as our evaluation metric.

4.3.2. Qualitative evaluation shows our visual superiority

Fig. 10 shows the visual comparisons between BrainUGDL and other
five potential competitors. The showcase example contrasts in consid-
eration include LANGUAGE (MATH-STORY), RELATIONAL (REL) and
SOCIAL (TOM) contrasts, which have the highest level of significant im-
provement among all the contrasts (Table S1). Each showcase contrast

includes two subjects, one is to randomly select from the test subjects
as a fixed reference, e.g., “143325”, and the other is to select the test
subjects with the lowest correlation with the reference subject, so as to
allow individual differences between the two subjects.

(1) Predictable activation patterns: As shown in Fig. 10, due
to the lack of ability to extract high-level context information, OLSR
performs rough predictions, especially in RELATIONAL (REL), whose
activation pattern is fragmented-like in the frontal lobe. With the ability
to extract anatomical context, Spherical U-Net, PointNet, MoNet, and
GAT achieve more accurate predictions than OLSR, but they lose some
important details (highlighted by green arrows in Fig. 10). Due to the
positive effect of simultaneous global and local context information
extraction and effective uncertainty-filtered learning mechanism, our
BrainUGDL is more sensitive to these details and obtains the best

prediction performance.

(2) Captureable individual differences: As shown in the high-
lighted red circles of Fig. 10, although there are different activation pat-
terns between different subjects under the same contrast, BrainUGDL
can also accurately capture the individual differences, which indicates
that BrainUGDL is able to capture such subject-specific characteristics

during the prediction process.
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Fig. 11. Results summary of ablation analysis on each key component of BrainUGDL.
The results show that each key component designed in our BrainUGDL has a positive
contribution to the cross-modal brain anatomo-functional mapping tasks.
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4.4. Ablation analysis

An ablation analysis is performed to explore and validate our de-
signed key components in BrainUGDL as Section 3 mentioned. Specifi-
cally, we evaluate the influence of the architecture of global-local dual
branches, the newly designed GGE unit, LGA unit, and UEM.

4.4.1. Effectiveness of the dual-branch structure

Considering that both global and local structures of brain anatomy
have an impact on brain functions from their respective perspectives,
our BrainUGDL is designed with two parallel branches that integrates
the advantages of the two different geometric deep learning technolo-
gies into a unified framework to encode the global context information
and local context information, respectively.

To verify the effectiveness of the dual-branch architecture in our
model, we design a set of comparative experiments to compare the per-
formance with removing the global-context branch or the local-context
branch to generate two different variants of BrainUGDL, which are
denoted as BrainUGDL-G and BrainUGDL-L, respectively. In addition,
we also build another single-branch variant of BrainUGDL (denoted as
BrainUGDL-S) by concatenating the local-context branch and global-
context branch in sequence. The comparative results between these
simplified models are shown in Fig. 11. It can be seen that BrainUGDL-
G and BrainUGDL-L lead to worse results than both BrainUGDL-S
and BrainUGDL. This justifies the complementarity between the ge-
ometric information provided by the global-context branch and the
local-context branch in delineating brain anatomy. On the other hand,
when compared with BrainUGDL-S, the original two-branched Brain-
UGDL has better predictive accuracy, which suggests that our design
of two parallel branches to extract purely global and local context
features on their own views respectively is more conducive to our brain
anatomo-functional mapping task. In addition, as shown in Fig. 12,
the t-SNE visualization of the output features of the two branches
also indicates a similar conclusion that the features extracted by the
two branches are complementary and can provide more power for the
cross-modal brain anatomo-functional predictions.

4.4.2. Effectiveness of GGE unit and LGA unit designs

As the two core designs of BrainUGDL, GGE unit and LGA unit are
embedded into two different branches to encode the global context
feature and local context feature, respectively. For ablation analysis,
we remove them respectively to validate the effects of the GGE unit
and LGA unit in our task. We denote BrainUGDL-GGE to represent the
model removing GGE unit from the global-context branch by replacing
it with a Global Maximum Pooling (GMP) layer used in PointNet (Qi
et al.,, 2017a). Similarly, we denote BrainUGDL-LGA to represent the
model removing LGA unit from the local-context branch by replacing
it with a standard Graph AttenTion (GAT) layer (Velickovi¢ et al.,
2017). We also denote BrainUGDL-NA to represent the model with

10
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Fig. 12. The t-SNE visualization of the output features from global-context branch and
local-context branch. The visualization indicates that the features extracted by the two
branches are complementary and can provide more power for the cross-modal brain
anatomo-functional predictions.
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Fig. 13. Visualization of the uncertainty estimation distribution of six different subjects
for the MOTOR(CUE-AVE) contrast. For easy observation of the cortical areas, inflated
views of the cortical surfaces are shown. It can be seen that the task-fMRI labels with
high uncertainty are with great differences in distribution across individuals, and the
uncertainty-filtered learning of UEM could adaptively revise the bias of these high-
uncertainty labels to make the model less disturbed by these noisy labels during the
training process.

both GGE and LGA replaced. We compare these three variants with
the original BrainUGDL and present the quantitative results listed in
Fig. 11. The results show that: removing arbitrary design causes a
decline in performance, and the decline is more pronounced if both
are removed, suggesting the importance of both GGE and LGA units.

4.4.3. Effectiveness of the UEM

As described in Section 3.4, we design UEM to estimate the model
uncertainty by predicting the variance and involve the estimated un-
certainty in the optimization objective to realize revised learning
from the noise-containing task-fMRI labels. We randomly selected the
MOTOR(CUE-AVE) contrast as a showcase example to visualize the
uncertainty estimation distribution of six different training subjects in
Fig. 13. It can be seen that the task-fMRI labels with high uncertainty
are with great differences in distribution across individuals, and the
uncertainty-filtered learning of UEM could adaptively revise the bias of
these high-uncertainty labels to make the model less disturbed by these
noisy labels during the training process. To evaluate the effectiveness
of our UEM design, we quantify the performance of BrainUGDL by
removing the UEM (BrainUGDL-UEM). As shown in Fig. 11, we can
observe that the UEM designed in BrainUGDL has a positive effect on
performance, which indicates that paying attention to the noise of fMRI
is essential to improve prediction performance.

4.5. Individual identification

There are individual differences in human brain functional activa-
tion patterns, that is to say, even under the same cognitive task contrast,
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Fig. 14. (a) BrainUGDL has the best performance of individual identification in the anatomo-functional prediction process. Correlation matrices for the MOTOR(CUE-AVE) contrast
between the predicted activation maps and the actual measured activation maps across the 39 test subjects are shown. The more obvious diagonal indicates that the predicted
activation map is only the most similar to itself, that is, the higher accuracy of individual identification. (b) The comparison of individual identification accuracy between
BrainUGDL and other potential competitors across the 39 test subjects on the 46 contrasts. BrainUGDL outperforms other competitors by a large margin. The corresponding task

name abbreviations and contrast labels can be found in Table 1.

the task-fMRI maps of each subject present more or less subtle differ-
ences (Barch et al., 2013). As a result, the human functional profiles
sometimes are also called “fingerprints” that can reflect the individual’s
biological information (Finn et al., 2015; Guedj and Vuilleumier, 2020).
Therefore, it has important significance to make the prediction have
better individual identification performance (Tavor et al., 2016).

We utilize the predicted task-fMRI maps to verify the ability for
individual identification, and BrainUGDL is significantly superior to
other competitors. We randomly select the MOTOR (CUE-AVE) contrast
as a showcase example to show the correlation matrices across the 39
test subjects in Fig. 14(a). The 39 by 39 correlation matrix reflects the
correlation between each subject’s predicted task-fMRI maps (columns)
and all other subjects’ (contains himself) actual measured task-fMRI
maps (rows). If the i—th element of the i—th row has the highest value,
it means that the i—th subject can be identified accurately among all
test subjects by the predicted task-fMRI maps. Similar to Tavor et al.
(2016), the matrices are normalized for clearly visualizing the higher
variability. It can be easily seen that the diagonal line of BrainUGDL is
more obvious compared to other competitors, which means that Brain-
UGDL has better performance in individual identification. Fig. 14(b)
shows the accuracy of individual identification for the 46 contrasts.
Compared with other competitors, BrainUGDL has better individual
identification accuracy, indicating that the powerful learning ability
of BrainUGDL greatly facilitates the capture of individual differences,
i.e., the different performances of different subjects under the same
contrast.
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5. Discussion
5.1. Test-retest reliability

The intraclass correlation coefficient (ICC) is a prominent statistic to
measure test-retest reliability of task-fMRI data (Zuo et al., 2010). The
test-retest reliability analysis was performed on the actual measured
task-fMRI maps and BrainUGDL predictions by calculating the ICC
using the ICC (3,1) mixed-effects model defined in Shrout and Fleiss
(1979). As shown in Fig. 15(a), the 39 test subjects involved in our
experiment were used for evaluated the test-retest reliability since
they had repeated measures sMRI and task-fMRI data. The repeated
measures data were collected in exactly the same way as the initial, but
four months later. The results are shown in Fig. 15(b), the BrainUGDL
predicted task-fMRI maps have excellently higher ICCs than that of
the actual measured task-fMRI maps, which shows the great poten-
tial of BrainUGDL to improve the low reliability of fMRI in clinical
applications.

5.2. sMRI vs. resting-fMRI

Considering the inherent close relationship between brain anatomy
and its functional activity, a major motivation of our work is the effort
to achieve the prediction of task-fMRI maps solely from individual
brain sMRI data. Beside this, another common approach is to use
resting-fMRI data to predict task-fMRI maps (Tavor et al., 2016; Ngo
et al., 2022), since resting-fMRI is regarded as to reveal the intrinsic



Z. Zhu et al.

Medical Image Analysis 83 (2023) 102681

(b) Test-retest Reliability
Repeated scanned L0
sMRI "
Y4 0.8
BrainUGDL )
8 0.6— .
Predicted task- Predicted task- = 04—
fMRI maps fMRI maps
(from initial sSMRI) (from repeated sMRI) 02
Actual Measured Actual Measured | -
task-fMRI maps task-fMRI maps 0.0 Predicted by  Actual

(initial scanned)

(repeated scanned)

BrainUGDL Measured

Fig. 15. (a) The test-retest reliability analysis was performed by evaluating ICC on the BrainUGDL predicted maps and the actual measured maps. (b) The predicted task-fMRI maps
got by BrainUGDL have higher ICC scores than that of the actual measured task-fMRI maps, which suggests that BrainUGDL has great potential in improving the low reliability

of fMRI in clinical applications.
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Fig. 16. The mapping performances of SMRI to task-fMRI (ours) and resting-fMRI to task-fMRI (Ngo et al., 2022) on PCC and whole-brain R?-score metrics. The corresponding

task name abbreviations and contrast labels can be found in Table 1.

functional organization of the human brain (Cole et al., 2016). Thus,
we compared our work with Ngo et al. (2022). Specifically, we have the
same prediction targets, that is the task-fMRI maps, but the difference
is that Ngo et al. (2022) is based on the resting-fMRI, which is an
intra-modal mapping, and we are wholly based on sMRI, which is a
cross-modal mapping.

Fig. 16 shows the prediction performances of these two approaches
on PCC and whole-brain R2-score metrics. It is easy to observe that
their prediction results have a high trend of consistency in the two met-
rics, which indicates that brain anatomical features and resting brain
functional features share a mutual basis in characterizing human higher
cognitive activities. A potential possibility is that the brain anatomical
features determine its resting functional activity patterns, which in turn
further determine human higher cognitive activities (Zamboni et al.,
2013; Van Tol et al., 2014). Besides, we also involved the group-
average map as a naive reference, since it reflects the most salient
features for a given contrast activation pattern. It can be seen that
the salient features for most contrasts can be captured by both of the
two approaches. Although the prediction method based on resting-fMRI
has a slight superiority, as resting-fMRI and task-fMRI belong to the
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same modality and have closely related, it is not surprising that the
prediction performances based on resting-fMRI are generally higher
than that of sMRI. Even so, in some contrasts of the MOTOR task
(e.g., MOTOR (RF, RH, T, RF-AVG, RH-AVG, T-AVG)), the prediction
performance based on sMRI outperforms that based on resting-fMRI,
which indicates that our approach has its unique and irreplaceable
advantages. In addition, compare to fMRI, sMRI is easier to collect and
does not require subjects to have cognitive abilities, making it easier to
generalize in clinical applications.

5.3. Limitation and future work

Although BrainUGDL obtained promising outcomes for cross-modal
brain anatomo-functional predictions, there are still some limitations
to be considered in this study. For example, here we only focused
on external anatomical features of the brain, and did not pay more
attention to the internal anatomical indicators, such as the white matter
fibers, which are thought to play a role in communication (Zhang and
Sejnowski, 2000). The main reason for this is that the spatial resolution
of the available neuroimaging data is insufficient to fully understand



Z. Zhu et al.

the orientation of white matter fiber bundles (Liu et al., 2020). In
our future work, we will work to continuously improve and optimize
the performance of the brain anatomo-functional mapping model and
attempt to extend this analysis to brain disease to explore the po-
tential anatomo-functional associations, since both brain anatomical
structures and cognitive functions of Alzheimer’s disease are impaired
with disease progression (Kulason et al., 2019).

6. Conclusion

In this work, we have proposed a novel unified geometric deep
learning framework (BrainUGDL) to perform the cross-modal brain
anatomo-functional mapping. It can directly process the 3D brain
anatomy as input, and output the predicted task-fMRI maps comparable
to the actual measured. On one hand, considering that both global and
local structures of brain anatomy have an impact on brain functions
from their respective perspectives, BrainUGDL is designed with an
effective global-context and local-context extraction mechanism for
the 3D brain anatomy and demonstrates its superiority through exten-
sive ablation analysis. On the other hand, considering the inevitable
measurement noise in task-fMRI labels, an uncertainty-filtered learning
mechanism is further proposed that enables BrainUGDL to achieve
adaptive revised learning from the noise-containing task-fMRI labels.
Experiments across seven open task-fMRI datasets from HCP demon-
strate that our BrainUGDL outperforms other potential competitors by
a large margin. BrainUGDL’s excellent performance makes it promising
to use sMRI data to make clinical decisions about individual cortical
functional localizations.
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